
Data Structures
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2022 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 Ordered singly-linked lists

© 2022 Arthur Hoskey. All
rights reserved.

Linked List

 Lists can be implemented using
representations other than an array.

 You could use a "linked list"
implementation.

 "Linked list" implementation allocates
memory dynamically FOR EACH element.

 We will be covering an ordered singly
linked list.

© 2022 Arthur Hoskey. All
rights reserved.

ADT Ordered List

Two implementations

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

 What does the ordered list look like
internally when using a "linked list"?

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List
14329177835011

Ordered List

 Each element is called a "node".
 Each node has the following:

◦ Data – One element of the list.
◦ Pointer – Points to the next element in the list.

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List
14329177835011

How do we know where the
start and end of the list is?

Ordered List

 The start of the list is the "head".
 The end of the list is the tail.
 The "head" and "tail" are pointers.

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

14329177835011

??

Where should the last
element point to?

head tail

Ordered List

 The start of the list is the "head".
 The end of the list is the tail.
 The "head" and "tail" are pointers.

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

14329177835011

Last element should point to
null.

head tail

Ordered List

 Our implementation - The implementation we will use only
has a pointer to the first node
◦ head points to the start of the list.
◦ No pointer to end of list.

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

length

14329177835011

head

7

List Interface

 Here is the List Interface we will be using:

public interface List {
public void insertItem(int item);
public void deleteItem(int item);
public boolean hasItem(int target);
public int retrieveItem(int target) throws Exception;
public void makeEmpty();
public boolean isFull();
public int getLength();

}

Note: Java has it own predefined List interface but it is more
complicated, so we are using our own version.

© 2022 Arthur Hoskey. All
rights reserved.

OrderedList Class

 We will write an OrderedList class that
implements our List interface.

public class OrderedList implements List
{

// Implementation code goes here
}

© 2022 Arthur Hoskey. All
rights reserved.

Node

 The linked-list data structure requires that we keep more
information at EACH place inside of it.

 Each item in the list will be a "Node" (not just the data).
 A node stores the data and a reference to the next node
 It should be defined as an inner class within the ordered

list class.

class Node {
Declare int data
Declare Node next

}

© 2022 Arthur Hoskey. All
rights reserved.

Data for this node (change
data type as necessary to
store other types of data)

Points to next
node in list

OrderedList Class Member
Variables

 Link-based private members
class OrderedList implements List {

Declare Node head
Declare int length

// Public members go here…
}

© 2022 Arthur Hoskey. All
rights reserved.

Singly-Linked Ordered List

 Each element of the list is of Node
 head is of type Node

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

length

data: 11

next:

head

3

data: 50

next:

data: 83

next:

Ordered List - Constructor

 What should the OrderedList
constructor do?

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List - Constructor

 What should the OrderedList
constructor do?

OrderedList Constructor
Set length to 0
Set head to null

© 2022 Arthur Hoskey. All
rights reserved.

Sets the # of
element to 0

List is empty
so head is null

Ordered List - Constructor

 Ordered list AFTER default constructor
runs.

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

length

head

0

Ordered List - insertItem

How do you insert an item?

Where does it go in the list?

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List - insertItem

 Where would a new item go? How is it
inserted?
ol.insertItem(77)

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

length

data: 11

next:

head

3

data: 50

next:

data: 83

next:

Ordered List - insertItem

Since the list is ordered (and there are no other constraints)
we can put it anywhere in the list.

The easiest place to insert is at the beginning.

insertItem Pseudocode

1. Create a new Node instance (dynamically allocate).

2. Set the fields on the new Node. This means setting the
data item and the next pointer. The next pointer should
be set to the current start of the list.

3. Set the pointer to the start of the list to the new Node.

4. Increment the length of the list.

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List - insertItem

ol.insertItem(77)

1. Create a new Node instance (dynamically allocate).

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

length

data: 11

next:

head

3

data: 50

next:

data: 83

next:

data:

next:

temp

Ordered List - insertItem

ol.insertItem(77)

2. Set the fields on the new Node. Set data item and next
pointer. Next points to current list start.

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

length

data: 11

next:

head

3

data: 50

next:

data: 83

next:

data: 77

next:

temp

Ordered List - insertItem

ol.insertItem(77)

3. Set the list start pointer (head) to the new Node.

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

length

data: 11

next:

head

3

data: 50

next:

data: 83

next:

data: 77

next:

temp

Ordered List - insertItem

ol.insertItem(77)

4. Increment the length of the list.

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

length

data: 11

next:

head

4

data: 50

next:

data: 83

next:

data: 77

next:

temp

Ordered List - insertItem

ol.insertItem(77)

When the insertItem method ends the temp pointer will go
out of scope and disappear.

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

length

data: 11

next:

head

4

data: 50

next:

data: 83

next:

data: 77

next:

temp

Ordered List - insertItem

This picture is LOGICALLY EQUIVALENT to the previous
slide!!!

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

length

data: 77

next:

head

4

data: 11

next:

data: 50

next:

data: 83

next:

Ordered List - insertItem

insertItem(int item)
Declare Node temp

Set temp to new node instance

Set temp.data to item
Set temp.next to head

Set head to temp
Increment length

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List - hasItem

How do you check if an item is in the list?

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

length

data: 77

next:

head

4

data: 11

next:

data: 50

next:

data: 83

next:

Ordered List - hasItem

Need to follow the pointer to get to the target data item.
boolean result
result = ol.hasItem(50)

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

length

data: 77

next:

head

4

data: 11

next:

data: 50

next:

data: 83

next:

Ordered List

Set location (just a temp variable) to the start of the list and
then keep following it until you reach the target or the
end of the list.

location = head

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

length

data: 77

next:

head

4

data: 11

next:

data: 50

next:

data: 83

next:

location

How do you make location
point to the next item?

Ordered List - hasItem

location = location.next

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

length

data: 77

next:

head

4

data: 11

next:

data: 50

next:

data: 83

next:

location

location was pointing at item 77.
Item 77 is pointing at item 11.

location now points at item 11.

Ordered List - hasItem

boolean hasItem(int target)
Initialize location to head

while location is not null
if location data equals target

return true

location = location.next
endWhile

return false

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List - deleteItem

Now we will move on to deleteItem…

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List - deleteItem

How do you delete an item from the list?

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

length

data: 77

next:

head

4

data: 11

next:

data: 50

next:

data: 83

next:

Ordered List - deleteItem

deleteItem Pseudocode (High level)

1. Find the target item to delete.

2. Update the pointers in the list so that the target
item is removed.

3. Set the target to null so memory for that node
can eventually be given back to the system.

4. Decrement the length.

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List - deleteItem

deleteItem Pseudocode (Detailed)

1. Find the target item to delete. Can be one of
two cases:

a) The start item is the target item.

b) The target is somewhere else in the list.

2. Update the pointers in the list so that the target
item is removed.

3. Set the target to null so memory for that node
can eventually be given back to the system.

4. Decrement the length.

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List - deleteItem

ol.deleteItem(77)

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

length

data: 77

next:

head

4

data: 11

next:

data: 50

next:

data: 83

next:

Ordered List - deleteItem

Declare location as node and Set to head
if item equals location.data

head = head.next
location = null
decrement length

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

length

data: 77

next:

head

4

data: 11

next:

data: 50

next:

data: 83

next:

location

Delete Code
For First Node

Ordered List - deleteItem

Declare location as node and Set to head
if item equals location.data

head = head.next
location = null
decrement length

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

length

data: 77

next:

head

4

data: 11

next:

data: 50

next:

data: 83

next:

location

Delete Code
For First Node

Ordered List - deleteItem

Declare location as node and Set to head
if item equals location.data

head = head.next
location = null
decrement length

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

length

data: 77

next:

head

4

data: 11

next:

data: 50

next:

data: 83

next:

location

Delete Code
For First Node

Ordered List - deleteItem

Declare location as node and Set to head
if item equals location.data

head = head.next
location = null
decrement length

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

length

data: 77

next:

head

3

data: 11

next:

data: 50

next:

data: 83

next:

location

Delete Code
For First Node

Ordered List - deleteItem

 This is what the list looks like after
ol.deleteItem(77) is complete.

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

length

head

3

data: 11

next:

data: 50

next:

data: 83

next:

Ordered List - deleteItem

Now delete 50 from the original list

ol.deleteItem(50)

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

length

data: 77

next:

head

4

data: 11

next:

data: 50

next:

data: 83

next:

Ordered List - deleteItem

location = head
while ((location.next != null) and (item != (location.next).data))

location = location.next
endWhile

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

length

data: 77

next:

head

4

data: 11

next:

data: 50

next:

data: 83

next:

location

Set location to
start of list

Ordered List - deleteItem

location = head
while ((location.next != null) and (item != (location.next).data))

location = location.next
endWhile

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

length

data: 77

next:

head

4

data: 11

next:

data: 50

next:

data: 83

next:

location You want to stop when
location is ONE

BEFORE the target!

Keep following location pointer
while it is not equal to item

Ordered List - deleteItem

if location.next equals null then return // target not in list
Node tempLocation = location.next
location.next = (location.next).next
tempLocation = null
Decrement length

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

length

data: 77

next:

head

4

data: 11

next:

data: 50

next:

data: 83

next:

location tempLocation

Code to Actually
Delete The Node

Ordered List - deleteItem

if location.next equals null then return // target not in list
Node tempLocation = location.next
location.next = (location.next).next
tempLocation = null
Decrement length

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

length

data: 77

next:

head

4

data: 11

next:

data: 50

next:

data: 83

next:

location tempLocation

Code to Actually
Delete The Node

Ordered List - deleteItem

if location.next equals null then return // target not in list
Node tempLocation = location.next
location.next = (location.next).next
tempLocation = null
Decrement length

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

length

data: 77

next:

head

4

data: 11

next:

data: 50

next:

data: 83

next:

location tempLocation

Code to Actually
Delete The Node

Ordered List - deleteItem

if location.next equals null then return // target not in list
Node tempLocation = location.next
location.next = (location.next).next
tempLocation = null
Decrement length

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

length

data: 77

next:

head

3

data: 11

next:

data: 50

next:

data: 83

next:

location tempLocation

Code to Actually
Delete The Node

Ordered List - deleteItem

if location.next equals null then return // target not in list
Node tempLocation = location.next
location.next = (location.next).next
tempLocation = null
Decrement length

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

length

data: 77

next:

head

3

data: 11

next:

data: 50

next:

data: 83

next:

location

tempLocation will
disappear when
DeleteItem ends.

tempLocation

Ordered List - deleteItem

Ordered list AFTER the following call:
ol.deleteItem(50)

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

length

data: 77

next:

head

3

data: 11

next:

data: 83

next:

Ordered List – makeEmpty

makeEmpty()
Set head to null
Set length to 0

makeEmpty()
Declare Node temp
while head not equal to null

Set temp to head
Set head to head.next
Set temp to null

endWhile

Set length to 0

© 2022 Arthur Hoskey. All
rights reserved.

Keep going until there
is no first element.

Keep deleting
the first element

Set the list length to 0

Below is a slower version. It explicitly sets all nodes
to null. This is unnecessary since the garbage

collection will find those nodes for us.

Make head null. All nodes in the queue are
now unreferenced so they will become

candidates for garbage collection

Ordered List – isFull

boolean isFull()
Node location
try

location = Create new node from heap
Set location to null
return false

catch OutOfMemoryError exception
return true

© 2022 Arthur Hoskey. All
rights reserved.

Check to see if
you can allocate

memory.

If you CAN, then
the list is NOT full

so return false.

If you CANNOT
allocate memory,

then the list is full.

Iterators

Now we will move on to iterators…

© 2022 Arthur Hoskey. All
rights reserved.

Iterators

 Here is a collection with data:

 The user of the collection does not have direct access to
the items of the collection.

 There needs to be a way to "visit" each item of the
collection while not giving direct access to it.

 That is what an iterator is for.

Collection

20 40 30 70

User of the collection
do not have direct
access to items it

contains

© 2022 Arthur Hoskey. All
rights reserved.

Iterators

 Iterators have access to the items of the collection.

 An iterator points at one item of the class.

 In general, you can do the following with an iterator:
◦ Get the data at that item.
◦ Check if the iterator is pointing at valid data.
◦ Go to the next item in the collection.
◦ Remove the item from that collection.

© 2022 Arthur Hoskey. All
rights reserved.

Iterators

This iterator points at the first item of
the collection.

You can get the data (20) at that item
if you want but not the other items.

Collection

20 40 30 70

Iterator

If we told the iterator to go to the next item then it would look like the
following….

Iterator now points at the second
item.

You can get the data in the second
item (40) but not the other items.

Collection

20 40 30 70

Iterator

© 2022 Arthur Hoskey. All
rights reserved.

Iterators and Ordered List

 We can build an iterator into our singly-linked ordered list
class.

 We could either use a whole other class for the iterator or
build it into the existing class.

 We will build it into the existing class for our
implementation.

© 2022 Arthur Hoskey. All
rights reserved.

IteratorForward Interface

 We will use our own iterator interface.
 The iterator will be built into the class (OrderedList can

implement this interface).

public interface IteratorForward {
int iterGetData();
void iterMoveNext();
void iterMoveStart();
boolean iterIsValid();

}

© 2022 Arthur Hoskey. All
rights reserved.

Iterator Implementation

iterGetData() returns int
if (iter is not null) the return iter.data

return Integer.MAX_VALUE

iterMoveNext()
if (iter is not null) Set iter to iter.next

iterMoveStart()
Set iter to head

iterIsValid() returns boolean
if (iter equals null) then return false

return true

© 2022 Arthur Hoskey. All
rights reserved.

Iterator – Using the iterator

// Code to declare and populate list goes here…

Move iter to start
while (iter is valid)

Print iter.data
Move iter to next

endWhile

Put the iterator at the
start of the list

Keep going while
iterator is valid

Print the data retreived
using the iterator

© 2022 Arthur Hoskey. All
rights reserved.

Go to next item

Big-O Comparison

Now we will finish with Big-O…

© 2022 Arthur Hoskey. All
rights reserved.

Big-O Comparison

 It is important to know the approximate
runtime cost operations when you create
a data structure.

 What are the Big-O runtimes for the list
implementations?

© 2022 Arthur Hoskey. All
rights reserved.

Big-O Comparison – Ordered List
(Linked-list)

Operation Cost

makeEmpty ???

isFull ???

getLength ???

hasItem ???

retrieveItem ???

insertItem ???

deleteItem ???

© 2022 Arthur Hoskey. All
rights reserved.

Big-O Comparison – Ordered List
(Linked-list)

Operation Cost

makeEmpty O(1)

isFull O(1)

getLength O(1)

hasItem O(n)

retrieveItem O(n)

insertItem O(1)

deleteItem O(n)

© 2022 Arthur Hoskey. All
rights reserved.

End of Slides

 End of Slides

© 2022 Arthur Hoskey. All
rights reserved.

